
JavaScript: Functions

1. Functions

1.1 What are functions?

A function is just a series of statements that are grouped together

into a special package in JavaScript.

We’re going to explore the anatomy of a function:

- all functions are defined with the function keyword, regardless of how

they are used or invoked. Defining the function is sometimes called

declaring the function.

- Before they can be used, all functions have to be declared or defined. it

makes the function available to your program.

- if you used to traditional functions, this might seem weird but in

JavaScript, the name of the function is sometimes optional.

- when you're creating a function name you can use a dollar sign $, _ an

underscore, letters A...Z, the numbers 0…9 and a number of other special

characters. A function like a variable, however, cannot start with a

number.

- After the function name, you have a set of parentheses, and inside those,

you can enter a series of parameters separated by commas. You can have

zero or as many parameters as you want, and these will become variables

that are local to and only available inside your function.

- A function include a series of instructions. We call those statements and

they go inside curly braces. They’re usually separated by semicolons.

function plus(a, b) {
 var sum = a+b;
 return sum;
}

console.log(plus(2,2));

- JavaScript provides a special statement called return. In our example, it

will return the value of our addition. What makes JavaScript special is

that a function can really return anything. JavaScript can return an object

or even another function. That lets JavaScript do things that are very

difficult to do in other languages.

- In order to use the function, you'll need to call it within your code. This

is called invoking the function.

1.2 Declaring Functions

The two ways of declaring functions. There’s another way to create a

function called a definition expression. The difference between function

declarations and definition expressions is how they're invoked.

- The other way to create a function is through something called a

definition expression. You can assign a function as the value of a variable

or an expression. This is sometimes called a function literal.

- It's also known as an anonymous function. It’s called an anonymous

function because you don't need to provide a name for it.

- If you don't provide a name for it, though, it's not bound to any

identifier. So sometimes, the names can be a little bit useful especially in

patterns like recursion.

- There's a lot that you can do with a function literal that you can't do with

a function declaration, and that's because you can use it anywhere that a

variable will go.

 var plus = function(a,b) {
 return console.log(a+b);
};

plus(2,2);

- You can invoke the function immediately. We can actually ask

JavaScript to execute this function immediately and all we would have to

do is put the parentheses and initialize the value immediately by passing

along some parameters. This is called initializing or instantiating the

function.

- A definition expression is very useful when a function is only needed

once, or if you want to execute something immediately. So the different

ways of declaring functions are going to give us some powerful ways of

handling our code blocks.

var plus = function(a,b) {
 return console.log(a+b);
}(2, 3); //Returns 5.

Although function declarations are more common in other languages,

definition expressions are handled differently in JavaScript, and it's part

of what makes it so powerful.

1.3 Invoking Functions Traditionally

Function code is not executed until that function is called or invoked. We

use the term invoking because some functions have no name and you

can't really say you are calling something that doesn't have a name.

- There's four ways of invoking functions. You can invoke them as

functions, as methods, as constructors, and through the call and apply

methods. The first two are definitely the most common, and the ones that

you may have seen already in some programs.

- Functions also get a couple of extra parameters: arguments and this.

The arguments parameter is useful when we want to create functions

without passing a specific number of parameters. So in our example,

when we want to add two numbers, we created a function that had a and b

as the variables. What if you wanted to have three numbers or an infinite

amount of numbers? You can't really create a certain amount of variables

if you don't know how many there are. But the arguments array lets you

do that.

The this parameter is a little bit trickier. And the way we call a function

(the four different ways) has an effect on the value of the this argument.

This is especially difficult to talk about because it's hard to not say this

when you are trying to explain the argument this.

- Another property of functions is that invoking them passes control

of our program to the function that we're calling.

- If the function has a name you can call it by it's name and then pass

along zero or more parameters. This way of calling a function is the

traditional invocation method.

- The interesting thing about traditional invocation is what happens to the

this parameter. With traditional invocation the this parameter gets a copy

of the global object. And that can be a little bit weird, bad, and create

some problems.

Example: I'm going create a function again. And I'll use the return

statement. I'm going to return a series of things. So I'm going to use the

return method as a function and as a matter of fact, the return method is a

function and therefore you can use it as you would a function. So we

can actually pass it along a series of parameters. The first one we'll pass is

the console log a plus b which is the result of our operation, then stick a

comma. Just like I would with a function. Notice that when I call a

function, I usually pass it along some parameters. I'm doing the same

thing to this return function. This is a straight function call.

console.log(this)

Returns the window object. this is odd because you may have been

expecting to get something related to this function. But as I mentioned,

invoking the function in this way makes the this argument have the global

object, which is the window object. So this is almost like having the

entire browser available to you. When you're programming with

functions that can be a little bit tricky because you may not want that big

humongous global argument. You may want something related to that

function.

console.log(arguments)

Returns an array-like object. I say array-like object because it's not

exactly an array but it looks just like one. And right now it's giving you a

list of the two parameters that we pass the function.

function plus(a, b) {
 return (
 console.log(a+b), //Returns 4.
 console.log(this), //Returns the Window object.
 console.log(arguments) //Returns [2, 2] .
)
}

plus(2,2)

So hopefully by learning how to invoke functions, you learned a little bit

more about how they worked. You learned about the four different ways

of invoking functions and how the traditional methods affect the this

parameter.

2. Function Invocation

2.1 Using Functions as Objects

In addition to the traditional way of calling functions, we can also invoke

them as methods. A method is nothing more than a function that has been

assigned as a property of an object.

- Before we talk about this invocation method, let's discuss how objects

work. what's an object? An object is nothing more than one of

JavaScript's many data types. In JavaScript, for example, you can have

variables. A variable will let you hold regular values, but you can also

have lists, which are also known as arrays. Arrays let you hold lists of

elements separated by commas. Those elements can be variables, they

can be strings, they can be numbers or Booleans. Objects are the most

flexible data type, because they can hold any other data type, including

other objects and functions.

- So here's what a typical object looks like. Objects always start and end

with curly braces. Inside we have a number of properties, and they are

separated by name and value pairs. Then we have a property that is an

array, it has the brackets at the beginning and end, but each element in the

array is a set of objects, once again. And so, they have curly braces at

the beginning and end, and name and property pairs.

plus: function (a,b) {
Assign functions as the property. Function literal, or a function without a

name, also called an anonymous function. Because we don't really need a

name for it. We're already going to be calling with the (plus) identifier.

Note: even though I've created the object and the function, the

this attribute is not get instantiated until I make a call to the function.

console.log(this)
Instead of returning the global object, it's returning the object that has this

function. It’s returning all the parameters of that object, which are the

status, as well as the function we call plus.

console.log(this.status)

By using the this attribute, I was able to query the parameter status of the

object. So this is one of the big advantages of calling functions as

methods. The this attribute gets the value of the object, which is really

useful.

So let’s review.

- The this argument is going to point to the object that the function is in.

- You can invoke the function using dot notion.

- The binding of this is only going to happen at invocation time. So the

this attribute is not going to be bound to that object until we invoke the

method. Now that actually makes the function highly reusable. So

binding functions to objects and using them as methods is a great

programming technique. You've probably already used it in all of your

JavaScript applications. It's a lot more flexible and useful than any of the

other methods. The this argument now becomes much more powerful and

relevant than before.

var calc = {
 status: 'Awesome',
 plus: function (a,b) {
 return (
 console.log(this), // Returns the object that has this function.
 console.log(a+b), //Returns the result of the addition 4.
 console.log(arguments), //Returns the arguments [2, 2] .
 console.log(this.status) //Returns the word Awesome.
)
 }
}

calc.plus(2,2);

2.2 Invoking Instances through the Constructor

In the last lesson, we created objects manually by first assigning them to a

variable and then adding properties and methods.

- Functions in JavaScript can do more than just help you create methods

for existing objects. They can create new objects themselves, which is

called constructing an object.

- You create an object with the new keyword. This method of creating an

object is called a constructor invocation. It can use the function keyword

to create a copy of an object with the variables from the function as its

properties.

var Dog = function() {
Now this dog is essentially an object and we create a new instance of this

object with the new constructor.

firstDog = new Dog;
firstDog.name = "Rover";
firstDog.breed = "Doberman";
So we could do firstDog and say that we want to create a new object

based on this dog function. Once we have that new copy we can assign a

name and a breed.

console.dir(firstDog);

Returns the dog and if you open it you'll notice we have a new

instance. And this instance has a breed of Doberman and the name of

Rover.

- The new keyword created a new instance, which is sort of like a copy

but not really. It's more like reproduction. The constructor creates an

object that is based on the original function.

- Each instance is going to have its own set of properties. Doing

console.dir for the secondDog, I'm going to see that I have two dogs but

each instance of these dogs is different. So they're sort of like copies but

not exactly.

return console.dir(this);
The this argument is going to point to each instance of the object. If we

called it within an object, it will be referring to the object. Otherwise, the

this attribute would be referring to the global object.

Whenever we use the constructor operator new, the this parameter is

going to contain a copy of the object that we've created.

- Convention says that constructor names should be capitalized. In my

function, I capitalize the name dog. This is sort of convention and it's a

good way of letting developers, and yourself, later on know that this

function is a little bit special because it creates an object.

A lot of times generating an object by adding a method like we did in the

last movie is the right way to create objects. However, the object

constructor allows you to invoke new instances of objects

dynamically. This is JavaScript's attempt at being somewhat object

oriented.

var Dog = function() {
 var name, breed;
 return console.dir(this);
}

firstDog = new Dog;
firstDog.name = "Rover";
firstDog.breed = "Doberman";

secondDog = new Dog;
secondDog.name = "Fluffy";
secondDog.breed = "Poodle"

2.3 Expanding Functionality through Prototype

So in the last lesson, we saw how we can create our own objects using

functions. The functions themselves become a constructor. What if we

wanted to expand the functionality of a constructor by adding say a

method?

- We can do that through that constructor's prototype object. So what is

this prototype object? Well, JavaScript is known as a prototypal

inheritance language. That means that you can base the functionality of

an object on another object.

- Every object can be based on another object, and as a matter of fact,

every object in JavaScript is based on a different object. That makes it

kind of convenient because we don't have to keep on building the same

functionality for different things.

- The way that we do this is by linking an object's prototype object to

another. This is going to make more sense with an example.

Recreate the Dog function again. To add some functionality to my Dog

object. I could do it in the constructor function, but what if I wanted to

use that same functionality for something else. So, say that I wanted to

create a method called Speak. And I wanted to have different types of

animals use the same functionality.

Dog.prototype.speak = speak;
to expand on my dog by accessing its prototype and then setting a method

of the dog To be the same as my speak function. it gives the dog the

ability to speak, or the method called speak.

In the console typing firstDog returns:

Dog {name: "Rover", breed: "Doberman", speak: function}

So we can look at our first dog instance, and notice that it says it has a

name, a breed, and it also inherited this function, called speak.

Cat.prototype.speak = speak;
Multiple objects can inherit the same functionality. So now that we have

this speaking functionality, we can add it to other objects. And now I get

the two different animals saying things.

Now each of them are instances. They have the same functionality. So

now, that allows me to modify one simple function to control the

functionality of two different objects.

- In JavaScript all objects inherit properties. And as a matter of fact, any

instances or any functions that we create as function declarations inherit

from the function object.

- function itself is a constructor and it also inherits from object.

As a matter of fact, if I were to define a variable and set it up to an empty

object. I would see that this is an object.

In the console:

var myThing = {};

console.dir(myThing)

Returns: Object

Now if I do a console directory on the speak function, I'll notice that it's

defined as a function. But if I look into these, you'll see that, that function

is using as its prototype, the object. So this function is actually based on

the object constructor.

In the console:

console.dir(speak)

Returns:

function (saywhat) { console.log(saywhat); }

arguments: null

caller: null

length: 1

name: ""

prototype: speak //RayV get Object instead of speak.

__proto__: function Empty() {}

<function scope>

This ability to create relationships in JavaScript is really valuable. With

the prototype object, we can expand the functionality of anything in

JavaScript. And yes, that includes functions, objects, and even the master

constructors themselves.

So the possibility for taking any existing functionality within JavaScript

and expanding it are endless.

var speak = function(saywhat) {
 console.log(saywhat);
}

var Dog = function() {
 var name, breed;
}

var Cat = function() {
 var name, breed;
}

Dog.prototype.speak = speak;
Cat.prototype.speak = speak;

firstDog = new Dog;
firstDog.name = "Rover";
firstDog.breed = "Doberman";
firstDog.speak('woof'); //Returns the word woof.

firstCat = new Cat;
firstCat.name = "Sniggles";
firstCat.breed = "Manx";
firstCat.speak('meow'); //Returns the word meow.

2.4 Understanding call-and-apply Invocation

We’ve talked about almost all the ways to invoke functions except for

one. And that is through two special methods available in

JavaScript. Known as Call and Apply.

http://www.w3schools.com/js/js_function_invocation.asp

In JavaScript, functions are objects. JavaScript functions have properties

and methods.

call() and apply() are predefined JavaScript function methods. Both

methods can be used to invoke a function, and both methods must have

the owner object as first parameter.

call() example:

function myFunction(a, b) {
 return a * b;
}
myFunction.call(myObject, 10, 2); // Will return 20.

apply() example:

function myFunction(a, b) {
 return a * b;
}
myArray = [10,2];
myFunction.apply(myObject, myArray); // Will also return 20.

Both methods takes an owner object as the first argument. The only

difference is that call() takes the function arguments separately, and

apply() takes the function arguments in an array.

In JavaScript strict mode, the first argument becomes the value of this in

the invoked function, even if the argument is not an object.

In "non-strict" mode, if the value of the first argument is null or

undefined, it is replaced with the global object.

Note: With call() or apply() you can set the value of this, and invoke a

function as a new method of an existing object.

- When you use this technique, it's sometimes known as indirect

invocation. That's because Call and Apply allow you to execute a

http://www.w3schools.com/js/js_function_invocation.asp

function in a slightly different way. And that gives you a little bit better

control over the this argument.

- With Call and Apply, you can define the value of the this argument. But

in the traditional function declarations, the this parameter is bound to the

global object.

var speak = function(what) {
 console.log(what); //Returns the word moof.

 console.log(this); //Returns the window object.

}

speak(“moof“);

The this argument returns the window object which is almost like saying,

the entire browser. It's not really useful.

- You can control this and pass it along with some arguments as well,

because Call and Apply take two parameters. The value of the this

argument to be inside the function, as well as the arguments you want to

pass to the function.

- Now the difference between the two is that Call passes a value and

Apply lets you pass an array.

var speak = function() {
 console.log(this.love); //Returns the word purr.

 console.log(this.normal); //Returns the word meow.
}

var saySomething = {normal: "meow", love: "purr"}
speak.call(saySomething);

Taking saySomething object and passing it to the speak method as the

this parameter.

So I was able to pass the object and I've got to output things and do things

with this object by using the this parameter inside the function.

var speak = function(what) {
 console.log(what); //Returns the word meow.

 console.log(this.love); //Returns the word purr.
}

var saySomething = {normal: "meow", love: "purr"}
speak.call(saySomething, saySomething.normal);

I can also pass along a value when I'm setting to the this parameter. So

the object that I am passing will be the value of this inside the function.

What I can do is also pass along one of the values. And now it will get

passed as the what parameter. So it gives you the ability to both pass

something as the parameter, as well as control the value of this. The this

parameter, even though I'm using it to pass a value, the this parameter is

still accessible.

As I mentioned, the difference between Call and Apply is that, if we

switch the method to Apply, we will be able to pass along an array

instead of an element. And then we still have access to saySomething

object through the this parameter inside the function.

var speak = function(what) {
 console.log(what); //Returns the word meouff.
 console.log(this.love); //Returns the word purr.
}

var saySomething = {normal: "meow", love: "purr"}
speak.apply(saySomething, ['meouff']);

So Call and Apply give you the power to bind objects of functions and

include them as the this parameter. This makes functions even more

flexible and is used in some important JavaScript techniques and patterns.

2.5 Using the Arguments Parameter

We've been passing a specific number of elements to functions, but

oftentimes, you either don't know how many elements you'll be needing

to pass to a function or you want your function to be able to accept any

number of elements. For that, we can use a special object available to

functions called the arguments parameter.

- the job of the arguments parameter is to hold a list of all the elements

passed as arguments to the function.

- the arguments parameter is an array-like object, because it looks like an

array and can do some of the things that we can do to arrays.

- We can call the arguments with a numerical index arguments[x] .

- We can also get the arguments.length , the property that gives us the

amount of elements that were passed to the function.

- Because we have these two properties, we can loop through the arrays

easily with a for loop.

- Because they're not arrays but an object that happens to have some list-

like functionality, we can't use array methods like pop, push, shift, or

others.

The for loop is going to go through all the elements in the argument

array.

So as you can see, I can feed this function as many parameters as I want

to.

var plus = function() {
 var sum = 0;
 for (var i = arguments.length - 1; i >= 0; i--) {
 sum += arguments[i];
 };
 return sum;
}

console.log(plus(2,2,2,3,2,3,4));

So here we're able to create a function that doesn't even require any

arguments. It just accepts however many things you pass into it. With the

arguments parameter, you can do this and other JavaScript patterns.

2.6 Returning Values

- Whenever you invoke a function, it's like generating an equation. And

equation usually have results. So we call these statements,

expressions. Because the job of the return statement, is to express the

result of the operation we perform in our function.

- The return statement is kind of optional. If you don't include it in your

code, the function will still return something. It'll just be the value

undefined.

- The return statement is only available inside the function body. So you

can't use it anywhere else.

- The return statement can be used to send something back to the

caller. So you can assign it to a variable. And it'll place a value in the

variable when the function returns.

- Return statements are usually the last statement in a function. But it

doesn't have to be. You can put it anywhere in the function, but it will

stop execution of the function.

- We can have as many return statements as you want. So if you want to,

you can use if statements, to make the function stop. And return a value

based on different conditions.

- The return statement can return anything or nothing at all. And that

includes returning other functions, an object, or as I mentioned nothing at

all. So for example, if you wanted to have a statement that evaluated the

undefined, you can issue a return statement without an expression (

return;) .

- You have to be careful with the return statement, is JavaScript auto

semi-colon insertion. JavaScript has a weird feature that makes semi-

colons on statements optional. It sort of tries to figure out where it should

insert a semicolon. But since the return statement can be used without a

value, it sees a return statement on its own as a complete statement.

Return

 a + b

Javascript will interpret the return statement as it's own statement. And

then stop the execution of the function.

2.7 Social Media Navigation Example

<nav class="socialmediaicons"></nav>

var socialMedia = {
 facebook : 'http://facebook.com/viewsource',
 twitter: 'http://twitter.com/planetoftheweb',
 flickr: 'http://flickr.com/planetotheweb',
 youtube: 'http://youtube.com/planetoftheweb'
};

var socialList = function() {
 var output = '',
 myList = document.querySelectorAll('.socialmediaicons');

 for (var key in arguments[0]) {
 output+= '' +
 '' +
 '';
 }
 output+= '';

 for (var i = myList.length - 1; i >= 0; i--) {
 myList[i].innerHTML = output;
 };
}(socialMedia);

3. Using Functions

3.1 Using Anonymous Closures

So far we've been using a JavaScript pattern that let's you create a

variable, and then executes that as a function. So let's talk a little bit more

about that, and then introduce you to a new pattern called an anonymous

closure. Function definitions are really common and easy to understand.

1- Invoking the function by calling its name.

function kung() {
 console.log('foo');
}
kung();

2- Assign the function to a variable.

var iKnow = function kung() {
 console.log('foo');
}();
iKnow();

We also learned that all functions are considered objects in

JavaScript. Since they are, you should be able to assign this function to a

variable.

I can’t call it using kung(); because the word kung doesn't exist in the

global scope. So, now I have to call the function by the word iKnow.

3- Letting the function execute itself by adding a pair of parenthesis to the

function so that we don't have to call the function manually.

var iKnow = function kung() {
 console.log('foo');
}();

It also allows you to instantiate the function by typing in some variables

between the parentheses so that we can use them inside the function.

The parenthesis changed our function declaration to a function

expression.

4- Anonymous function.

We don’t need the function name because we're not using the kung

function inside itself (like recursiveness). So we could get rid of its name

and this will be an anonymous function now.

var iKnow = function() {
 console.log('foo');
}();

5- Anonymous closure.

Wrap the function part in parenthesis. That’s going to ask JavaScript to

convert the function part into a value and also use the last parentheses as

a way of passing some values to the function part if we wanted to.

(function() {
 console.log('foo');
})();

So this pattern is known as a self-executing function or an anonymous

closure because it doesn't have a name and any variables you create

inside it are only going to be accessible inside the function.

So, in other words, what we're doing here is we're closing the variables

inside this function from the rest of the world, and that's why it's called a

closure. This pattern is important when you work with certain JavaScript

constructs, like modules.

3.2 Understanding Hoisting and Variable Scope

- Scope refers to when and where within your code a variable exists and

retains a certain value (the life and death of a variable).

- In most programming languages, variables have a block

scope. Variables created in a code block or inside curly braces exist only

inside those curly braces {}. They cease to exist outside them.

- In function scope, variables live within functions. Any variables you

create with the keyword var are local to the function that they were

created in.

- Scope chain: if I have a function within a function. A variable you

create in a parent function lives also in the child function as well. In

simple terms, it's going to look for a variable up through all the parent

functions.

- global variables: be careful with JavaScript variables, is that any

variables that you create without the keyword VAR become global

variables available to your whole application even if it’s created inside a

function. That’s actually a very bad thing because a global variable

can potentially cause problems when you have a lot of functions using

similar variables. For example the dogName variable might collude with

some other variable called dogName that you've declared at, in some

other function. So, you never really want to expose your variables

globally. You always want to use the VAR and make sure that you know

where your scope of your variables is at any time.

- Variable definitions are hoisted. Remember, JavaScript is a scripted

language, and, as such, during the browser-processing phase, JavaScript

actually rearranges your variable declarations and moves them to the top

of their functional scope. That means that variables can actually exist

before you use them.

function myDog () {
 console.log(dogName + 'says woof');
 var dogName = 'Fido';
}

myDog(); //Returns undefined says woof .

We get undefined because JavaScript noticed that you declared a

variable, and before it ran any of the code, it actually moved the

declaration to the top of the function scope. So, it actually does something

like this:

function myDog () {
 var dogName;
 console.log(dogName + 'says woof');
 dogName = 'Fido';
}

It actually creates a variable dogName, and then assigns it to Fido that's

why it says undefined. The variable, it's actually sitting there, but it

doesn't have a value yet.

And so, that can cause problems when you create more complex

applications.

Say that you have a global variable dogName, and named it Rover, and in

the function, you try to declare the variable after you're calling it. So,

what do you think should happen here?

var dogName = 'Rover';

function myDog () {
 console.log(dogName + 'says woof');
 var dogName = 'Fido';
}

myDog(); //Also returns undefined says woof .

You probably expect the console to log rover says woof, but, we're going

to get the same error. Undefined says woof, because although the variable

inside the function doesn't technically have a value until (after the log

statement), the declaration has been moved to the top of the function

(before the log statement). So, remember what's actually happening

here is like you have a two separate statement.

This is how JavaScript is actually re-writing your code, and that can

cause some additional problems because you may have something like

this, not realize that later on, you have a variable that you created and

expect it to have a different value.

The other interesting thing about this is that functions actually get

hoisted as well to the top of the declaration keychain.

So, for example, it doesn't actually matter where I put the function call. I

can actually call it before the function exists (the function declaration).

So, that could cause some additional problems, and because of that, you

must make sure that you declare all of your variables at the top of the

function scope and also make sure you put all of your functions, if you

can, also at the top of the function scope. The fact that you've got the

function created and then you call it, is a good thing and a little bit better

code and easier to read than what you would write otherwise.

3.3 Creating and Namespacing Modules

- Modules let you reuse code across different applications.

When you first start developing with JavaScript, you tend to focus on

coding just for the current website. Whenever you begin a new site, you

usually kind of look around your old code and grab a couple of different

functions from here and there. And what modules allow you to do is to

start reusing some of that code without having to copy and paste. It sort

of creates libraries of things that you can use across different websites.

- The first thing you do whenever you create any module is create a

namespace for it. Namespacing allows you to protect any variables that

you have in your modules from any global scoped variables. This is

important because in any module, you might be using some variables that

are already used by other things in that application. So we already know

that we can easily encapsulate our functions within parentheses, and that

protects all the variables inside those functions from the global scope.

But what if we want access to those variables from within our

application? To do that, we need to create a variable and assign it to our

self-executing function. And that way we'll have access to things inside

it.

var ray = (function() {

 var prvtVar; //Those variables would not be accessible outside of

this function. So they would be protected from the global scope.

 return {
 speak: function() {
 console.log('hello');
 }
 };

})();

- So now that we've namespaced the ray variable, we have a way to get

into this function. But what about going the other way? What if we want

to get something out of this function, or we want to execute something

that's in this function, outside in the main application? Well, to do that,

you're going to use a return statement that allows you to communicate

back with the rest of the application. It can help you expose things that

we want our application to know about. So instead of returning a

statement, we can return an object, and through the object we can create

variables and functions (methods).

Now I have a function that I can get to with the ray namespace and that I

also can output something to the main application by creating this

function. So I can call this function with that notation. We need to add

a script tag that allows us to tell something to that function.

<script>
 ray.speak(); //Calling our method. Returns hello .
</script>

So, now we've created a module, and we're able to execute that module

from within our main application, while still protecting all of our

namespaces.

So this is a simple fully functional module. The key thing to note, though,

is that we've added namespace which is going to protect the content

within the module from any other global variables. Plus we used a return

statement to execute functions we want our application to be able to

execute.

3.4 Passing Arguments and Setting Module Defaults

In the last lesson, we created our module, and then used namespacing to

protect any internal variables from outside scope. We also set up a return

function, so we could talk to our methods. In this lesson, I'm going to

show you how to send information to our functions using an object,

and then how to set defaults, just in case the user happens to call a

method without initializing it.

We can send things to our function easily through the arguments

array. So right here, where we're calling the function, we can pass

something to it. Now, I could just type in whatever I wanted the function

to speak here. So I could say something like, ray.speak('howdy'); . But

it's actually better to pass along things as an object. That way, we can

pass multiple parameters into our function at the same time.

Create an internal object with a name called say and a value called

howdy.

<script>
 ray.speak({ say: 'howdy' });
</script>

I can easily capture the arguments by checking the arguments object that

comes from our function.

var ray = (function() {

 return {
 speak: function() {
 console.log(arguments[0].say);
 }
 };
})();

The danger here is that the user executes a function, but doesn't pass

anything you'll notice that it says that it can't say something undefined,

because we're asking to read an argument that doesn't have anything in it.

Since this empty call to our method is generating an error, we can fix this

by using a little JavaScript trick called a short-circuit evaluation. If the

user forgets to set it, the myArguments variable will be set to nothing.

NOTE

http://www.openjs.com/articles/syntax/short_circuit_operators.php

The && and || operators are called short-circuit operators. They will

return the value of the second operand based on the value of the first

operand.

The && operator is useful for checking for null objects before accessing

their attributes. For example...

var name = person && person.getName();
This code is the same as

if(person) {
 var name = person.getName();
}

The || operator is used for setting default values.

var name = persons_name || "John Doe";
The equalant code is

if(persons_name) {
 var name = persons_name;
} else {
 var name = "John Doe";
}

I can set up a default object for our function. And this is going to be

available to any functions that I create for my project. So I'll set up a

variable (object) called default. And I'll set up a value there called say, as

a default for what I want it to say.

And now it doesn't matter what I do, it's always going to output

something correctly. And also I can always come up here and check my

default values and modify them in one place.

http://www.openjs.com/articles/syntax/short_circuit_operators.php

var ray = (function() {
 var DEFAULTS = {
 say: 'hello'
 }

 return {
 speak: function() {
 var myArguments = arguments[0] || ''; //Set it to the arguments that

get passed from my function, or set it to nothing.

 var statement = myArguments.say || DEFAULTS.say;
 console.log(statement);
 }
 };
})();

So now, you have a good module set up. You can call it with or without

any parameters, and we have some defaults, just in case they're called

without anything. It's a good idea to set up defaults for your modules at

the top of your objects. They're going to be easier to find there, and can

make your methods useful even if someone forgets to set them.

3.5 Chaining Module Method Calls

Our module works really well with a single function. In this lesson, I am

going to show you a technique called chaining. That you can use to make

it easier to work with multiple methods. It's a really simple trick, that

allows one function to call another. You've probably seen it in things like

jQuery.

<script>
 ray.speak({ say: 'howdy' });
 ray.run({speed: 'fast'}); //Returns fast, or normal by default if the

user didn’t provide an argument value.
</script>

So you may have seen some libraries that make this a little bit easier, and

more concise. By letting you use dot notation, to chain one function call

to another. Now this really couldn't be easier to set up. But the thing is,

that you really have to understand why it's working. All we have to do is

make sure each function returns the calling object. And Remember that's

exactly what the this argument does in a function, return the object that

contains it. Lets go back in our script. And what we'll do is, we'll issue a

return statement inside each of these functions and have it return this.

return this;

And now this means that I can execute these by putting them right next to

each other.

<script>
 ray.speak({ say: 'howdy' }).run().speak({ say: 'run faster' }).run({speed:
'faster'});
</script>
Returns howdy, normal, run faster and faster.

So why is this working? This is a little sort of weird. If you don't get

what's going on. And the reason is, that the this parameter is going to

return the instance of the object. So in other words, this is going to return

the ray object, once again. Normally, return exits the current function. So,

if I was out of the speak method. I wouldn't have the object that I needed

to run the next method. But since I'm returning this, the last thing that the

speak function will do is return the object itself. And so therefore now, I

have access back again to either my speak, or my run function.

This technique is going to make your code just a little bit easier to

call. And it makes it sort of fun to use. I've seen it used in libraries like

D3 and jQuery. It doesn't take that much effort to set it up. Hopefully,

after taking this course. You now understand why this is working. And

you'll be able to utilize patterns like chaining, and other ones. Because

you understand them.

var ray = (function() {

 var DEFAULTS = {
 say: 'hello',
 speed: 'normal'
 }

 return {

 speak: function() {
 var myArguments = arguments[0] || '';
 var statement = myArguments.say || DEFAULTS.say;
 console.log(statement);
 return this;
 },

 run : function() {
 var myArguments = arguments[0] || '';
 var running = myArguments.speed || DEFAULTS.speed;
 console.log('running...'+ running);
 return this;
 }

 };
})();

4. Conclusion

I hope you learned something new and exciting about the functional

nature of JavaScript and some of the cool patterns you can use to make

your applications better.

There is a lot of really good books out there you can check out. So you

may want to check out "JavaScript: The Good Parts" from Douglas

Crockford. Everybody recommends his book and that's because it's a

really awesome book, focusing on not a lot of stuff, but a lot of great stuff

within JavaScript.

There's also this book that's actually being revised right now called

"Eloquent JavaScript". If you're into a simpler explanation of

JavaScript, this could be a really good book for you.

Also love to hear this podcast called JavaScript Jabber. It has a lot of

JavaScript focused content that you may enjoy.

Now I don't subscribe to a lot of newsletters but I really like this

JavaScript weekly newsletter. It gives you a lot of the top news

happening in the JavaScript industry.

Now if you're into conferences, you may want to check out a O'Reilly

Fluent. It's a really good conference in San Francisco in March.

They always have a lot of really cool speakers.

